Categories
AI

Kohl’s CTO on empowering people and optimizing supply chain with AI

All the sessions from Transform 2021 are available on-demand now. Watch now.


Say you have a product at a store you want customers to be able to grab off the shelf and buy. How do you balance that with selling the same inventory to people ordering online? How do you decide how much of your inventory you sell online? When someone makes an order online, how do you decide whether to fulfill the order with inventory from stores or your company’s warehouses?

These are just some of the many questions that retail giant Kohl’s wrestled with. The answer the retailer came to, according to Paul Gaffney, Kohl’s chief technology and supply chain officer, was to let AI take a shot at the decision-making.

“When you start allowing machine learning algorithms to make decisions, they sometimes make decisions that aren’t intuitive. They aren’t what the people would make,” Gaffney said.

AI makes a decision

Usually, the deciding factor when trying to pick where to ship from would be shipping costs, Gaffney said at VentureBeat’s Transform 2021 virtual summit. However, it also became clear to the company that when an item was left in inventory at a location where it takes longer to sell, it will eventually wind up being marked down, and that would hurt the bottom line.

“We had this nagging suspicion we were incurring more markdowns than we needed to. Could we be smarter and say, ‘Hey, how about if we sell the merchandise that we might have placed months ago in a spot where we now know it’s probably not going to sell in that store … so let’s pick it from that store and avoid the future markdown,’” Gaffney said.

Kohl’s turned to partners to develop solutions for their supply chain optimization. Then came the leap of faith.

“What opened a bunch of doors for us was the willingness to say, ‘OK, we’re willing to risk a certain amount of money in the belief in the algorithm, and even if it doesn’t work, that investment in learning was good enough,’” Gaffney said. “And it turned out that it paid off.”

With successes in hand, Kohl’s is reflecting on its usage of AI, developing their in-house capability to exercise more control over their AI tools, and also considering further ways to optimize their stores beyond backend inventory management. For example, the data showed that each store has a different make up of customers, so the AI decides what kind of things to display to account for the different group of customers. Allowing the algorithm to suggest making changes to the products on sale at different stores based on customer data, resulted in “enormous positive upside,” said Gaffney.

Human experience

People should “educate themselves” on what machine learning can do, but also to understand how these advanced technologies can disrupt people’s work patterns. Enterprises need to think about ways to “purposefully re-engage” people in activities that aren’t conducive to machine learning.

“It’s tempting to treat the adoption of machine learning AI and big data as a technical problem,” Gaffney said. “But it is much more so a human change management problem as well.”

VentureBeat

VentureBeat’s mission is to be a digital town square for technical decision-makers to gain knowledge about transformative technology and transact.

Our site delivers essential information on data technologies and strategies to guide you as you lead your organizations. We invite you to become a member of our community, to access:

  • up-to-date information on the subjects of interest to you
  • our newsletters
  • gated thought-leader content and discounted access to our prized events, such as Transform 2021: Learn More
  • networking features, and more

Become a member

Repost: Original Source and Author Link

Categories
Tech News

Google Play Store crowdsources optimizing Android apps

Once upon a time, Android apps were these monolithic packages that contained almost all versions of the app for all architectures and languages that it supports. Recently, Google has been pushing for a new system that put Android packages on a diet to make downloading, installing, and running them faster. Its latest trick is to learn how to better optimize that process and it’s pretty much roping in almost all Android users in a crowdsourced “study” on how apps are being used after they are installed.

Simply calling “App install optimization”, Google says it is learning trends in what users do after installing an app. It pretty much watches which parts of the app users jump to when an app is opened for the first time including what order they go through parts of the apps. When enough users send this data, Google says, it will be able to optimize an app’s installation and startup for everyone.

It doesn’t go into further detail but the idea is to perhaps prioritize the parts of the app that users are most interested in. This could mean that Google Play will download certain parts of the app first and download the rest in the background or optimize the startup of certain parts of the app. Whether this will happen automatically or if developers have to make changes to the app, Google isn’t saying.

Naturally, there will be privacy concerns over such monitoring but Google promises it isn’t gathering personal information or even looking at anything outside the app. The feature is also opt-in and can be disabled. Interestingly, it notes that even those with App install optimization turned off can still benefit from the data that other users allow Google to harvest.

Of course, the success of such a crowdsourced system will depend on how many users participate in it. Additionally, this only applies to apps in the Google Play Store so other app stores and sources don’t really get any benefit from it.

Repost: Original Source and Author Link